

ANTITUMOR AGENTS 201. CYTOTOXICITY OF HARMINE AND β-CARBOLINE ANALOGS

Junko Ishida, Hui-Kang Wang, Kenneth F. Bastow, Chang-Qi Hu, and Kuo-Hsiung Lee^a*

^aNatural Products Laboratory, ^bDivision of Medicinal Chemistry and Natural Products, School of Pharmacy,
University of North Carolina, Chapel Hill, NC 27599-7360, U.S.A.

^cSchool of Pharmacy, Shanghai Medical University, Shanghai 200032, China

Received 2 August 1999; accepted 25 October 1999

Abstract: Twenty-six β -carbolines were evaluated for in vitro cytotoxicity in a human tumor cell line panel. Harmine (3) showed significant activity against several cell lines including three drug-resistant KB sublines with various resistance mechanisms. α -(4-Nitrobenzylidine) harmine (16) had a broad cytotoxicity spectrum (ED₅₀ values from 0.3–1.2 μ g/mL against 1A9, KB, SaOS-2, A549, SK-MEL-2, U-87-MG, and MCF-7 cells). © 1999 Published by Elsevier Science Ltd. All rights reserved.

In our continuing search for new plant-derived antitumor agents, the CHCl₃ extract of *Symplocos serchuensis*, a plant indigenous to southern China, showed potent cytotoxicity. In our initial fractionation and isolation studies, we identified harman (2) from this extract. This β -carboline was reported previously from the related species *S. racomosa* Roxb.² Norharman (1) and harman (2) have been reported to exhibit mutagenic and co-mutagenic properties,³ and to inhibit topoisomerase I.⁴ In addition, several γ -carbolines intercalate into DNA base pairs and exhibit significant in vitro cytotoxic and in vivo antitumor activities.⁵ However, because few studies have been reported on the antitumor activity of this compound class against human tumor cell lines, we initiated such an investigation of 26 β -carbolines, including harman and harmine (3). Herein we report the results of this study.

Materials. Compounds 2, 3, and 16–27 were obtained from Aldrich, Inc (Milwaukee, WI). Compound 4 was obtained by boron tribromide demethylation of 3 (yield 24%). Treating an aqueous solution of 19 with NH₄OH afforded the free base 15 as crystals. 7-Alkylation (10 equiv of C₂H₅Br, (CH₃)₂CHBr, CH₃(CH₂)₅Br, CH₃(CH₂)₀Br, CH₃(CH₂)₁₅Br, ethanolic NaOH) of 4 afforded 5–9 (yield 50–60%). Compound 10 was generated by acetic anhydride-pyridine acetylation of 4 at room temperature (yield 70%). N-Alkylation of 3 (1.2 equiv of NaH, 10 equiv of CH₃I, C₂H₅I, CH₃(CH₂)₃I, THF-DMF, room temp, 3h) afforded 12–14 in high yield (ca. 90%). Esterification of 4 with (1*S*)-(-)-camphanic chloride in the presence

Scheme 1.

1:
$$R_1 = R_2 = R_4 = H$$

13 : R₃ = C₂H₅

14: R₃ = C₄H₉

15:
$$R_1 = Br, R_2 = OCH_3, R_4 = CH_3$$

24:
$$R_4 = (CH_2)_7 CH_3$$
, $R_5 = H$, $R_6 = COOH$

25:
$$R_4 = CH(C_2H_5)C_2H_5$$
, $R_5 = H$, $R_6 = COOH$

$$\begin{matrix} R_1 & & \cdot & X \\ R_2 & & & N^+ R_4 \\ N & & CH_3 \end{matrix}$$

18:
$$R_1 = R_3 = H$$
, $R_2 = OCH_3$, $R_4 = CH_3$, $X = I$

19:
$$R_1 = Br$$
, $R_2 = OCH_3$, $R_3 = R_4 = H$, $X = Br$

20:
$$R_1 = H$$
, $R_2 = OCH_3$, $R_3 = C_3H_7$, $R_4 = CH_3$, $X = I$

21:
$$R_1 = R_3 = H$$
, $R_2 = OCH_3$, $R_4 = C_3H_7$, $X = I$

22:
$$R_1 = R_3 = R_4 = H$$
, $R_2 = OCH_3$, $X \approx Br$; 3,4-dihydro

Table 1. In vitro cytotoxicity of harmine and β-carboline analogs

Compounds KB* A549* CAKI-1* MCF-7* IA9* Sa 2 8.9 9.3 8.0 19.0 6.1 6.1 3.8 6.1 1.49* Sa 6.1 1.49* Sa 6.1 1.49* Sa 6.1 1.4 6.1 1.6 6.1 1.6 6.1 1.6 6.1 1.6 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.2 7.0 6.2 7.0						
9.3 8.0 19.0 6.1 2.4 1.9 10.5 1.6 5.0 9.0 9.2 3.8 5.0 9.0 5.0 8.0 17.0 12.3 11.9 7.9 4.4 2.2 3.1 1.9 1.2 5.0 3.8 1.4 5 NA NA 8 4.3 10.2 7.5 4.5 17.0 >20 20.0 19.5 17.0 9.5 20.0 19.5 18.6 67 14.6 2.3 0.9 7.0 1.2 0.3 >20 >20 ND >20 0.9 7.0 1.2 0.3 0.9 7.0 1.0 >10 0.9 0.9 0.0 >10 0.9 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1A9 ^b SaOS-2 ^b	γ HOS _p	HCT-8 ^b	SK-MEL-2	U-87-MG	HEL
24 1.9 10.5 1.6 5.0 9.2 9.2 3.8 5.0 9.0 5.0 8.0 17.0 12.3 11.9 7.9 4.4 2.2 3.1 1.9 1.2 5.0 3.8 1.4 5 NA NA 8 4.3 10.2 7.5 4.5 17.0 >20 20.0 19.5 17.0 9.5 20.0 19.5 18.6 6.7 14.6 2.3 0.9 7.0 1.2 0.3 >20 >20 ND >20 0.9 7.0 1.2 0.3 0.9 7.0 1.0 >20 0.9 8.9 6.2 1.9 0.9 0.9 0.9 0.0 0.9 0.9 0.0 0.0 0.9 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	6.1 ND°	QN	Ð	>20	19.0	8.6
6.5 9.2 9.2 3.8 5.0 9.0 5.0 8.0 17.0 12.3 11.9 7.9 4.4 2.2 3.1 1.9 1.2 5.0 3.8 1.4 5 NA NA 8 4.3 10.2 7.5 4.5 17.0 >20 20.0 19.5 4.2 7.4 5.3 1.8 6.0 11.0 9.5 2.2 13.6 6.7 14.6 2.3 0.9 7.0 1.2 0.3 >20 >20 ND >20 1.9 4.0 9.2 >20 <1.3 15.0 15.0 ND 2.0 9.8 >10 10.0 >10 >20 >20 <1.3 15.0 15.0 ND 2.0 9.8 >10 >10 >20 2.0 1.3 15.0 15.0 ND 2.0 9.8 >10 >10 >20 2.0 <1.3 15.0 15.0 ND 2.0 2.0 2.0 <1.3 15.0 15.0 ND 2.0 2.0 >20 >20 >20 >20 2.0 2.0 1.3 2.0		R	Q.	18.5	14.5	1.9
5.0 9.0 5.0 8.0 17.0 12.3 11.9 7.9 4.4 2.2 3.1 11.9 5 NA NA 8 4.3 10.2 7.5 4.5 17.0 >20 20.0 19.5 4.2 7.4 5.3 1.8 6.0 11.0 9.5 2.2 13.6 6.7 14.6 2.3 0.9 7.0 1.2 0.3 >20 8.9 6.2 7.0 3.9 7.3 5.6 1.9 4.0 9.2 >20 <1.3 15.0 15.0 ND 2.0 9.8 >10 10.0 >10 >20 >20 <1.3 15.0 15.0 ND 2.0 9.8 >10 10.0 >10 >20 >20 >20 >20 >20 >20 >20 >20 >20 >20		QN	£	QN ON	4.2	Q
17.0 12.3 11.9 7.9 4.4 2.2 3.1 1.9 7.9 5 NA NA 8 4.3 10.2 7.5 4.5 17.0 >20 20.0 19.5 4.2 5.0 4.3 1.8 4.2 7.4 5.3 1.8 4.2 7.4 5.3 1.8 6.0 11.0 9.5 2.2 13.6 6.7 14.6 2.3 0.9 7.0 1.2 0.3 >20 7.0 1.2 0.3 20 8.9 6.2 7.0 3.9 7.3 5.6 1.9 4.0 9.2 >20 <1.3		Ð	ΩN	9.5	Ð	S S
4.4 2.2 3.1 1.9 1.2 5.0 3.8 1.4 5 NA NA 8 4.3 10.2 7.5 4.5 17.0 >20 20.0 19.5 4.2 5.0 4.3 1.8 4.2 7.4 5.3 1.8 6.0 11.0 9.5 2.2 6.0 11.0 9.5 2.2 13.6 6.7 14.6 2.3 0.9 7.0 1.2 0.3 >20 7.0 1.2 0.3 >20 8.9 6.2 7.0 3.9 7.3 5.6 1.9 4.0 9.2 >20 <1.3		10.2	NA	NA	16.4	Ð
1.2 5.0 3.8 1.4 5 NA NA 8 4.3 10.2 7.5 4.5 17.0 >20 20.0 19.5 4.2 5.0 4.3 1.8 6.0 11.0 9.5 2.2 13.6 6.7 14.6 2.3 0.9 7.0 1.2 0.3 >20 >20 ND >20 0.9 8.9 6.2 7.0 3.9 7.3 5.6 1.9 4.0 9.2 >20 <1.3 15.0 15.0 ND 2.0 9.8 >10 >10 >20 20 >20 <20 20 >20 ND >20 20 >20 >20 ND >20		2.5	3.8	× \$	4.2	Ω
5 NA NA 8 4.3 10.2 7.5 4.5 17.0 >20 20.0 19.5 4.2 7.4 5.3 1.8 6.0 11.0 9.5 2.2 13.6 6.7 14.6 2.3 0.9 7.0 1.2 0.3 >20 >20 ND >20 0.9 8.9 6.2 7.0 3.9 7.3 5.6 1.9 4.0 9.2 >20 <1.3 15.0 ND 2.0 9.8 >10 10.0 >10 >20 >20 <1.3 20 >20 <1.3 21 >20 <20 22 >20 <20 23 <20 24 <20 >20 <20 26 <20 27 <20 28 >20 <20 20 <		6.7	4.1	QN	5.4	Ð
4.3 10.2 7.5 4.5 17.0 >20 20.0 19.5 4.2 5.0 4.3 1.8 4.2 7.4 5.3 1.8 6.0 11.0 9.5 2.2 6.0 11.0 9.5 2.2 13.6 6.7 14.6 2.3 0.9 7.0 1.2 0.3 >20 >20 ND >20 0.9 8.9 6.2 7.0 4.0 9.2 >20 <1.9		5	ΝΑ	Q	ΝA	Ð
17.0 >20 20.0 19.5 4.2 5.0 4.3 1.8 4.2 7.4 5.3 1.8 6.0 11.0 9.5 2.2 13.6 6.7 14.6 2.3 0.9 7.0 1.2 0.3 >20 >20 ND >20 0.9 8.9 6.2 7.0 3.9 7.3 5.6 1.9 4.0 9.2 >20 <1.3		QN	Q	5.0	ΩN	QN Q
4.2 5.0 4.3 1.8 4.2 7.4 5.3 1.8 6.0 11.0 9.5 2.2 13.6 6.7 14.6 2.3 0.9 7.0 1.2 0.3 >20 7.0 1.2 0.3 0.9 8.9 6.2 7.0 3.9 7.3 5.6 1.9 4.0 9.2 >2.0 1.3 15.0 15.0 ND 2.0 9.8 >10 10.0 >10 >10 >10 >10 >20 >20 >20 ND >20 >40 >10 >10 >10 >40 >10 >10 >10 >40 >10 >10 >10 >40 >10 >10 >10 >40 >10 >10 >10 >40 >10 >10 >10 >40 >10 >10 >10 >40 >10 >10 >10 >40		QN	Q	>20	£	S
4.2 7.4 5.3 1.8 6.0 11.0 9.5 2.2 13.6 6.7 14.6 2.3 0.9 7.0 1.2 0.3 >20 7.0 1.2 0.3 0.9 8.9 6.2 7.0 3.9 7.3 5.6 1.9 4.0 9.2 >20 <1.3		Q	>20	Q.	7.8	R
6.0 11.0 9.5 2.2 13.6 6.7 14.6 2.3 0.9 7.0 1.2 0.3 >20 >20 ND >20 0.9 8.9 6.2 7.0 3.9 7.3 5.6 1.9 4.0 9.2 >20 <1.3 15.0 15.0 ND 2.0 9.8 >10 10.0 >10 >20 >20 ND >20 >20 >20 ND >20 >20 >20 ND >20 >20 >20 ND >20		QN	>20	QN ON	7.4	Q
13.6 6.7 14.6 2.3 0.9 7.0 1.2 0.3 0.9 8.9 6.2 7.0 0.9 8.9 6.2 7.0 0.9 8.9 6.2 7.0 0.9 7.3 5.6 1.9 15.0 15.0 ND 2.0 0.8 >10 10.0 >10 >10 >10 >10 >10 >20 >20 >20 >20 >20 >20 >20 >20 >20 >20 >20 >20 >20 >20 >20 >20 >20 >20 >2		Ð	>20	QN Q	12.3	R
0.9 7.0 1.2 0.3 20 20 ND 20 0.9 8.9 6.2 7.0 3.9 7.3 5.6 1.9 4.0 9.2 20 <1.3 15.0 15.0 ND 2.0 9.8 >10 10.0 >10 20 9.8 20 9.8 >10 10.0 >10 20 >20 >20 20 20		6.5	16.0	>20	14.0	Ð
>20 >20 ND >20		S	Ð	1.0	1.2	Q Q
0.9 8.9 6.2 7.0 3.9 7.3 5.6 1.9 4.0 9.2 >20 <1.3 15.0 15.0 ND 2.0 9.8 >10 10.0 >10 >10 >10 >10 >10 >20 >20 <1.3 10 >10 >10 >10 >20 >20 >20 >20 <1.3 20 >20 >20 <1.3 20 >20 >20 <1.3 20 >20 >20 <1.3 20 >20 >20 >20 >20 >20 >20 >20 >20 >20 >		Q	Ð	R	£	>20
3.9 7.3 5.6 1.9 4.0 9.2 >20 <1.3 15.0 15.0 ND 2.0 9.8 >10 10.0 >10 >10 >10 >10 >10 >20 >20 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3		S	Ð	8.4	6.2	Ð
4.0 9.2 >20 <1.3 15.0 15.0 ND 2.0 9.8 >10 10.0 >10 >10 >10 >10 >10 >20 >20 >10 >10 >10 >20 >20 >20 >20 >20 >20 >20 >20 >20 >20 >20 >20 >20 >20 >20 >20 >20 >20		S	S	5.0	6.7	QN
15.0 15.0 ND 2.0 9.8 >10 10.0 >10 >10 >10 >10 >10 >20 >20 >20 >20 >10 >10 >10 >20 >20 >20 >20 >20 >20 >20 >20		S	Q	18.0	>20	15.0
9.8 >10 10.0 >10 >10 >10 >10 >10 >20 >20 ND >20 >20 >20 ND >20 >20 >20 ND >20		Ð	QN	ΩN	<u>R</u>	9.5
>10 >10 >10 >10 >20 >20 ND >20 >20 >20 ND >20 >40 >40 >40 >40 >40		R	Q.	>10	8.6	Ê
>20 >20 ND >20 >20 >20 ND >20 >40 >40 >40 >40		Q	Ω	>10	>10	æ
>20 >20 ND >20		QN	Ð	Q	Ð	Ϋ́
017 017		QN	Ω	Q.	Ð	>20
017 017 017		QN	QN	>10	Ϋ́	<u>R</u>
2.7 7.8 5.6 7.0		QN QN	ΩŽ	10.0	0.6	Q.

^aCytotoxicity as ED₃₀ for each cell line, is the concentration of compound that caused a 50% reduction in absorbance at 562 nm relative to untreated cells using the SRB assay. ^bCell lines include epidermoid carcinoma of the nasopharynx (KB), lung carcinoma (A549), renal cancer (CAKI-1), breast cancer (MCF-7), ovarian cancer (1A9), osteosarcoma (BoOs-2), osteosarcoma (HOS), ileocecal carcinoma (HCT-8), melanoma cancer (SK-EL-2), glioblastoma (U-87-MG), and embryonic lung fibroblast (HEL). ^cND= not tested. ⁴NA = not active at the highest concentration tested.

of DMAP, K₂CO₃, Et₃N and dry pyridine and CH₂Cl₂ afforded 11 in 20% yield.

Cytotoxicity Assays. In vitro cytotoxicity assays were carried out using microtitre plate cultures and sulforhodamine B (SRB) staining according to procedures described in Rubinstein et al.⁶ Cells were grown in RPMI-1640 medium containing 10% (v/v) fetal calf serum and 100 μg/mL Kanamycin. Cultures were propagated at 37 °C in a humified atmosphere containing 5% CO₂. Cell lines were obtained from the Lineberger Comprehensive Cancer Center (UNC-CH) except the KB-resistant sub-lines. Their isolation and characterization are described in detail elsewhere.^{7,8} Drug stock solutions were prepared in DMSO. The final concentration of DMSO in the growth medium was 2% (v/v) or lower, concentrations without effect on cell replication. The human tumor cell line panel consisted of epiderimoid carcinoma of the nasopharynx (KB), lung carcinoma (A-549), ileocecal carcinoma (HCT-8), renal cancer (CAKI-1), breast cancer (MCF-7), melanoma cancer (SK-MEL-2), ovarian cancer (1A9), glioblastoma (U-87-MG), osteosarcoma (SaOS-2), osteosarcoma (HOS), and embryonic lung fibroblast (HEL). The human KB drug-resistant sub-line panel included KB-7d (pleotrophic resistance including MRP multidrug resistant protein), KB-VIN (expressing P-glycoprotein), and KB-CPT (pleotrophic mechanism including reduced level of topoisomerase I).

Results and Discussion. Twenty-six β -carboline derivatives (2–27) were tested for cytotoxicity against a panel of human tumor cell lines. The results are summarized in Table 1. Harmine (3) showed potent cytotoxic activity against KB, A549, CAKI-1, 1A9 and HEL cells with ED₅₀ values of 2.2, 2.4, 1.9, 1.6, and 1.9 μ g/mL. Compounds 2, 11, 17, and 22–26 were inactive. Compound 16, which has an α -4-nitrobenzylidene at the 1-position, was the most active compound in this study.

In addition, we examined 2, 3, and 20 in three drug-resistant KB cell lines (Table 2), including KB-7d, KB-VIN, KB-CPT. Compound 3 (harmine) exhibited cytotoxic effects in three drug-resistant cell lines, but again, 2 was not active. Compound 20 was cytotoxic against the KB-CPT cell line, but KB-VIN and KB-7d cells were cross-resistant, suggesting that this analog may be a substrate for the two types of drug-efflux pump expressed.

Compound	$ED_{50} (\mu g/ml)^a$				
	KB ^b	Kb-7d ^b	KB-VIN ^b	KB-CPT ^b	
2	8.9	16.5	17.5	15.0	
3	2.2	3.7	2.5	4.3	
20	1.8	35.5	>40(11)	3.0	

Table 2. Activity of selected compounds against drug resistant tumor cell lines

^aCytotoxicity as ED₅₀ for each cell line, is the concentration of compound that caused a 50% reduction in absorbance at 562 nm relative to untreated cells using the SRB assay. ^bThe human KB drug-resistant SVB-lines, including KB-7d (pleotrophic resistance including MRP multidrug resistant protein), KB-VIN (expressing P-glycoprotein) and KB-CPT (pleotrophic mechanism including reduced level of topoisomerase I) are described elsewhere. ^{6,7}

From the above data, the following conclusions were drawn. (a) Introducing an oxygenated substituent

at C-7 led to enhanced cytotoxic activity (compare 3 with unsubstituted 2). (b) The length of the C-7 alkoxy chain affected both cytotoxicity and cell line specificity. Compounds 7 (hexyloxy) and 8 (decyloxy) were more active than 3 (methoxy) against the MCF-7 (ED₅₀ 3.1 and 3.8 μg/mL, respectively) cell line and 8 was more active against the A549 (ED₅₀ 1.2 μg/mL) cell line. In other cell lines, the three compounds were comparable. Conversely, 5 (ethoxy), 6 (isopropoxy), and 9 (hexadecyloxy) were not significantly cytotoxic in any cell line. Therefore, cytotoxicity was maximal with a six to ten carbon C-7 alkoxy group. (c) N-Alkylated 3-derivatives (12–14, 20) showed strong cytotoxic effects against KB and 1A9 cell lines. (d) Bromination of 3 at C-6 gave 15 (6-bromoharmine), which showed selective activity against the 1A9 cell line. (e) The 3,4-dihydro-β-carbolines (17, 22–25) were inactive. However, 27, an N-methyl derivative, was selectively active against the A549 cell line with an ED₅₀ value of 2.7 μg/mL. Thus aromaticity of the pyridine ring may be important for antitumor activity. (f) The N-alkyl salts (18–21) showed cell line specific cytotoxicity. For example, harmine methiodide (18) showed selective activity against the A549 cell line. (g) Substitution at the 1-position by α-4-nitrobenzylidene led to (16), which exhibited increased activity against most of the cell lines tested.

In summary, the position and nature of substituents on the harmine nucleus seem to modulate antitumor activity. Within the series of β -carboline derivatives (2–26), selective activities against KB, A549 and 1A9 cell lines were observed. Synthesis of additional analogs and mechanism of action studies are ongoing to develop more potent compounds.

Acknowledgement: This investigation was supported in part by a grant CA 17525 from the National Cancer Institute, NIH, awarded to K. H. Lee.

References and Notes:

- For the previous paper in the series, see Ohyama, M.; Tanaka, T.; Ito, T.; Iinuma, M.; Bastow, K.F.; Lee, K.
 H. "Antitumor Agents 200. Cytotoxicity of Naturally Occurring Resveratrol Oligomers and Their Acetate Derivatives," *Bioorg. Med. Chem.* 1999, 9, 3057.
- 2. Späth, E. Monatsh. 1920, 41, 401.
- 3. de Meester, C. Mutat. Res. 1995, 339, 139.
- Funayama, Y.; Nishino, K.; Wakabayashi, K.; Nagao, M.; Shimoi, K.; Ohira, T.; Hasegawa, S.; Saijo, N.
 Mutat. Res. 1996, 349(2), 183.
- 5. Bisagni, E.; Nguyen, C.H.; Pierré, A.; Pépin, O.; de Cointet, P.; Gros, P. J. Med. Chem. 1988, 31, 398.
- Rubinstein, L. V.; Shoemaker, R. H.; Paull, K. D.; Simo, R. M.; Tosini, S.; Skehan, P.; Scudiero, P. A.;
 Monks, A.; Boyd, M. R. J. Natl. Cancer Inst. 1990, 82, 1113.

- 7. Ferguson, P. J.; Fisher, M. H.; Stephenson, J.; Li, D.-H.; Zhou, B.-S.; Cheng, Y.-C. Cancer Res. 1988, 48, 5956.
- 8. Beidler, D. R.; Chang, J.-Y.; Zhou, B.-S.; Cheng, Y.-C. Cancer Res. 1996, 56. 345.
- 9. (9): colorless needles, mp: 110–113 °C, 1 H NMR (300 MHz, CDCl₃) δ 0.88 (3H, t, J = 7 Hz), 1.27 (12H, m), 1.48 (2H, m), 1.83 (2H, m), 4.03 (2H, t, J = 7 Hz), 6.89 (1H, dd, J = 2,8 Hz), 6.93 (1H, d, J = 2 Hz), 7.72 (2H, d, J = 5 Hz), 8.70 (1H, br s) J = 2 Hz), 6.79 (1H, br s), 7.05 (2H, d, J = 8 Hz), 7.08 (2H, d, J = 8 Hz), 7.22 (2H, d, J = 8 Hz); FABMS: m/z 338.2354, $C_{22}H_{30}N_2O$, requires 338.2358.